

Classification of Process Safety Incidents and Near Misses

Dr. Eckhard Fiedler, BASF SE, Ludwigshafen Competence Center Process Safety ESE/SP European Conference on Plant & Process Safety Cologne, 11 & 12 December 2019

Overview

- Incident Management Background
- Classification of Process Safety Incidents and Near Misses Overview
- Incident Classification Based on Actual Outcome (PSI)
 - Incident Levels
 - Material Factors
- Incident Classification Based on Potential Outcome (PSI, sPSI, PSNM)
 - Risk Matrix for Incident Management Purposes
 - Application Rules for Risk Matrix
 - ► Examples

Incident Management – Background

In the Past

Incident management was based only on the actual outcome of the incident

Nowadays

- Incident management was supplemented by a risk-based approach to answer the question:
 - Could something worse have happened?
- Potential outcome has to be rated for both
 - Incidents and
 - Near Misses

New Incident Management

Purpose

- Identify risks with potentially high impact
- **Focus** on investigation and mitigation of high risks

Method

- All **incidents** and **near misses** have to be reported in a database
- All incidents and near misses have to be classified, based upon actual and potential outcome
- Determine the incident level based on the actual outcome by using reporting criteria
- Also determine the incident level based on the potential outcome by using the risk matrix
- The overall incident classification is the highest of either actual outcome or potential outcome

Incident Classification - Overview

Classification of Near Misses - Overview

Classification of Actual Outcome (1/3)

Criteria and Procedure

Classification of actual outcome of Process Safety Incidents (PSI) according ICCA¹ reporting criteria

- Human Health Impact
- Direct Damage Costs as a Result of Fire, Explosion or Implosion
- Chemical Impact Beyond Secondary Containment
- Community Impact (Shelter-in-Place, Evacuation)
- Environmental Impact (off-site)

Classification of Actual Outcome (2/3)

Incident Levels (IL)

	Human Health Impact	Direct Damage Costs ¹	Community Impact ²	Chemical Impact Beyond Secondary Containment ³
1	1 LTI, Reversible Injuries	≥ 2.500 €< 250.000 €	≤ 3 Std. Shelter-in- Place	$ \ge TQ \text{ confined and beyond SC} < 5 \times TQ \times MF \text{ beyond SC} $
2	≥ 2 LTI, Reversible Injuries	≥ 250.000 €< 2.500.000 €	> 3 Std. Shelter-in- Place	$ \ge 5 \times TQ \times MF \text{ beyond SC} < 25 \times TQ \times MF \text{ beyond SC} $
3	≥ 1 LTI, Irreversible Bodily Damage	≥ 2.500.000 €< 25.000.000 €	≤ 1 Day Evacuation	\geq 25 × TQ × MF beyond SC
4	≥ 1 Fatalities	≥ 25.000.000 €	> 1 Day Evacuation	NA

- ¹ Due to Fire, Explosion or Implosion
- ² Officially declared (including precautionary)
- ³ Diked area, chamber etc.

TQ = Threshold Quantity

SC = Secondary Containment

MF = Material Factor

Classification of Actual Outcome (3/3)

Material Factors (MF)

Material Hazards Hazard Statements	PSI-TQ Menge	Material Factor CriteriabpRelevant Hazard Statements		MF	Examples
Fatal H300, H310, H330	≥ 1 kg	< 60°C + Gases		0,5	HCN, Cl ₂ , POCl ₂
		≥ 60°C		1	TDI
Toxic / Harmful	≥ 10 kg	< 60°C	H331, H332	0,5	NH ₃ , HCI
H301, H311, H331 / H302, H312, H332		≥ 60°C	H301, H311, H331, H312, H332	1	2-Ethylhexanol
			H302	2	DEG
Hazardous	≥100 kg		H220, H221, H224	0,5	H₂, HC≡CH
Substances without Acute Toxicity			All GHS classified substances except mentioned here	1	EtOH, White Spirit
except		≥ 60°C	H226	2	3-Hexanol
H300, H310, H330/H301, H311, H331/H302, H312, H332 as well as EUH Statements			H341, H361, H362, H373	2	

We create chemistry

Potential Outcome of Incidents and Near Misses

Criteria

Rating of potential outcome is **mandatory** for

Category	Ereignistyp		
Incident	PSI Process Safety Incident		
	sPSI	small Process Safety Incident (≥10% of ICCA Values)	
Near Miss	PSNM	Process Safety Near Miss	
	AFPD	Activation or Failure of a Protective Device	

Procedure

Evaluation is preferably carried out with **risk matrix for incident management purposes**, resulting in a risk class A...F which corresponds to an incident Level $(1 \dots 4^{1})$.

Remark: not the raw risk but the risk with installed countermeasures is to be considered!

Rating of Potential Outcome by Risk Matrix for Incident Management Purposes

Risk Matrix

		Severity S			
		S 1	S 2	S 3	S 4
	P0	А	В	D1	E1
ty P	P1	A/B	В	E1	E2
abili	P2	В	С	E2	F
Prok	Р3	С	D2	F	F
	P4	E2	F	F	F

Assignment of Risk Classes A ... F to Incident Levels ① ... ④

Risk Class	Incident Level		
A, A/B	④ Catastrophic		
B, C, D1	3 Serious		
D2, E1	② Significant		
E2 F	1 Moderate		

Think in terms of orders of magnitude!

In cases of non-applicability of the risk matrix a case-by-case decision is necessary!

Rating of Potential Outcome by Risk Matrix

Definition of Probability P and Severity S

Probability P		Criteria		
P0	Frequent	It is anticipated that harm/scenario will happen (once per year)		
P1	Occasional	Harm/scenario may happen occasionally (approximately once in 10 years)		
P2	Rare	Harm/scenario may happen rarely or almost happened within a plant lifetime (approximately once in 100 years)		
P3	Very rare	Harm/scenario is not anticipated, but thinkable under very unfavorable circumstances (approximately once in 1000 years)		
P4	Reasonably not to be expected	Not a credible scenario, reasonably not to be expected (approximately less than once per 10000 years)		

Severity S

- **S1** Potential for one or more fatalities
- **S2** Potential for one or more serious injuries¹
- **S3** Potential for one or more LTI/RDI. Reasonably a persistent disability is not assumed
- **S4** Potential for minor injuries, or irritation (First Aid Case FAC)

¹ Severe head injury, amputation, burns affecting > 10% of body surface, loss of eye or sight etc.

Applicability of Risk Matrix

Applicable in

Well defined scenarios

Not applicable in

Undefined common causes

e.g. design failures, wrong material of construction, poor maintenance, insufficiently qualified operators, staff shortages

General rules

- Consider only reasonable impacts
- Let common sense prevail

Rating of Potential Outcome – Example 1

Incident

Emission of 900 kg gaseous Hydrogen Chloride (H280, H314, H331) over a period of 9 hours to the atmosphere, i.e. 100 kg/h

Actual Outcome: Incident Level 2 Significant

Potential Outcome:

Boundary conditions must be defined:

Outlet (height, personnel presence)? H331 = toxic if inhaled \rightarrow max. S1, probably S2

If Leakage...

... due to operating error → P2, therefore P2×S2 risk class C and → incident level ③ serious

...due to wrong gasket \rightarrow design failure, matrix not applicable

... due to assembly error → "human failure" → P2/P3 × S2 → C③ / D2 ②

BASF We create chemistry

Potentials

Conceivable Escalation

Rating of Potential Outcome – Example 2

Incident

- Emission of 5000 kg of an extremely flammable gas (H220)
- The gas cloud was diluted by strong wind and blown over sparsely populated area
- No ignition
- No injuries or fatalities

Actual Outcome: incident level ③ serious

Potential Outcome:

If the wind had blown the extremely flammable gas cloud into residential areas and had ignited, there would be an escalation potential for one or more fatalities

➔ incident level ④ catastrophic

BASF We create chemistry

Potential Outcome due to Activation or Failure of a Protective Device (AFPD)

- By definition, only a process-related activation of a protective device fulfills the criterion of an AFPD
- A design-compliant activation is assigned the incident level ① moderate
 - The **failure of a protective device** is generally i.e. regardless of the triggering moment assigned the incident level ③ serious (not mitigated raw risk of risk class B or C)